
Computational Complexity Fall 2018

NL Completeness

Lecturer: Weiming Feng Scribes: Weiming Feng

1 L and NL

The complexity classes L and NL are defined as follows

• L = SPACE(log n);

• NL = NSPACE(log n).

There are many computational problems in complexity classes L and NL. Here are two examples:
bracket matching and PATH.

Bracket matching: Let S ∈ {(,)}∗ be a sequence which consists of two symbols ‘(’ and ‘)’. The
matched bracket sequence is defined as follows.

• the empty sequence is a matched bracket sequence;

• if S is a matched bracket sequence, then (S) is also a matched bracket sequence;

• if S1, S2 are two matched bracket sequences, then S1S2 is also a matched bracket sequence.

For example “()(())” is a matched bracket sequence, but “(()” is not a matched bracket sequence.
The bracket matching problem asks to decide whether a sequence S ∈ {(,)}∗ is a matched bracket
sequence.

This problem is in class L. Consider a Turing machine M that scans the sequence S from left
to right. M maintains a integer cnt. Initially, set cnt = 0. In ith step, if the ith symbol of S is ‘(’,
then cnt ← cnt+1; if the ith symbol of S is ‘)’, then cnt ← cnt− 1. The sequence S is accepted by
M if and only if cnt ≥ 0 during the whole procedure and cnt = 0 after the nth step, where n = |S|
is the length of the input sequence.

Exercise: Verify that M solves bracket matching problem with O(log n) space in work tape. 1

PATH: Let G = (V,E) be a directed graph and s, t ∈ V be two vertices. The PATH problem is
defined as

PATH ≜ {(G, s, t) | there is a path from s to t in G}.

The PATH problem is in class NL.

Exercise: Verify PATH ∈ NL.

1Exercises are NOT assignments. You do NOT need to submit the solutions of exercises in this note. Exercises in
this note are EASY and most solutions can be found in the textbook. You should try to solve exercises by yourself
then refer to the textbook.

1

Read-once certificate: Alternatively, we can define the class NL based on read-once certificate.
This definition is similar with the certificate-based definition of NP. Let M be a logspace Turing
machine with an additional read-once certificate tape. The certificate tape is a read-only tape.
Initially, the head on such tape is located on the left most place. On each step, the head either
stays in the current place or moves to the right. Remark that the head cannot move to the left.
Hence the machine can read each bit in certificate tape only once.

Definition 1 (Class NL). A language L ∈ NL if there exists a deterministic Turing machine
M with an additional read-once certificate tape and a polynomial p : N → N such that for any
x ∈ {0, 1}∗

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|), s.t. M(x, u) = 1,

where M(x, u) is the output of M when x is placed on its input tape and u is place on its additional
read-once certificate tape, and M uses at most O(log |x|) bits on its work tape.

Exercise: Verify that two definitions of NL are equivalent.

2 Logspace reduction and NL-complete problem

We focus on the complexity question: whether L = NL. We want to find a class of NL-complete
problems such that if one of NL-complete problem is in L then all problems in NL are in L.
We can not use polynomial reduction to defined the complete problems for NL. We claim that
any language L1 ∈ NL is polynomial-time reducible to the trivial language L2 = {1}. For any
x ∈ {0, 1}∗, define

f(x) ≜

1 if x ∈ L1

0 if x /∈ L1.

Recall L ⊆ NL ⊆ P. It implies that f can be computed by a polynomial Turing machine. Hence,
x ∈ L1 if and only if f(x) ∈ L2. It is easy to see L2 ∈ NL. The trivial language L2 = {1} is
NL-complete under the polynomial-time reduction.

We introduce the following logspace reduction.

Definition 2 (Logspace reduction). Let f : {0, 1}∗ → {0, 1}∗ be a polynomially-bounded function
(there exists a constant c such that |f(x)| ≤ |x|c for all x ∈ {0, 1}∗). We say f is implicitly logspace
computable if the language L = {< x, i >| f(x)i = 1} and L′ = {< x, i >| |f(x)| ≤ i} are in L.

Language A is logspace reducible to language B, denoted as A ≤l B, if there exists a function
f : {0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and x ∈ A if and only if f(x) ∈ B for
all x ∈ {0, 1}∗.

Informally, f is implicitly logspace computable if there is a O(log n)-space Turing machine that
computes every bit of f(x). Note that x is an instance of size |x| = n. The reduction function f
maps x to another instance f(x). The size of the new instance |f(x)| can be a polynomial of n.
However, the logsapce Turing machine only has O(log n) space in work tape. It can not store the
whole f(x). Thus, the Turing machine should be able to computes every bit of f(x).

Lemma 1. If A ≤l B and B ≤l C, then A ≤l C; if A ≤l B and B ∈ L, then A ∈ L.

2

The proof of Lemma 1 is in the textbook.

Definition 3 (NL-complete problem). A language L is said to be NL-complete if and only if
L ∈ NL and for any language L′ ∈ NL, it holds that L′ ≤l L.

Theorem 2. PATH is NL-complete.

Proof Sketch: It is easy to verify PATH ∈ NL. We prove that for any language L ∈ NL, it holds
that L ≤l PATH. By the definition of the class NL, let M be the logspace non-deterministic Turing
machine that decides whether x ∈ L for any x ∈ {0, 1}∗. For any input x ∈ {0, 1}n of length n,
let f(x) be a PATH instance (G, s, t), where G is the configuration graph 2 of M on input x, s is
the start configuration and t is the accepting configuration. Suppose the graph G is represented
as an adjacency matrix A. For any two configurations C1 and C2, A(C1, C2) = 1 if there is a
directed edge from C1 to C2 in configuration graph G and A(C1, C2) = 0 if otherwise. We claim
that A(C1, C2) can be computed with O(log n) space. Since M is a logspace Turing machine, then
|C1| = |C2| = O(log n). Given C1 and C2, it is easy to check whether A(C1, C2) = 1 by simulating
one step of M .

Remark. Note that f(x) = (G, s, t) in above reduction. The size of configuration graph G is
poly(n). Any logspace Turing machine can not store the whole adjacency matrix A in its work
tape. Hence, the Turing machine should be able to computes every bit of f(x) (i.e. every bit of
adjacency matrix A).

3 NL= coNL

The class coNL is defined as coNL ≜ {L | L is a language and L ∈ NL}. Similarly, we say a
language L is coNL-complete if L ∈ coNL and L′ ≤l L for all L′ ∈ coNL. We prove the following
theorem in this section.

Theorem 3. NL=coNL.

At first, we introduce a coNL-complete problem PATH. Let G = (V,E) be a directed graph
and s, t ∈ V be two vertices. The PATH problem is defined as

PATH ≜ {(G, s, t) | there is no path from s to t in G}.

Exercise: Verify that PATH is coNL-complete.
Theorem 3 can be proved by the following lemma.

Lemma 4. PATH ∈ NL.

Exercise: Verify that PATH ∈ NL implies NL = coNL.

Proof of Lemma 4. We prove that if two vertices s and t are disconnected in graph G(V,E), then
there is a read-once certificate.

2The definition of configuration graph can be found in the textbook and the slides of lecture 4.

3

Let Ci ⊆ V be the set of vertices that are reachable from s in G within at most i steps

Ci ≜ {u ∈ V | distG(s, u) ≤ i}.

If we can provide a read-once certificate to indicate whether t ∈ Cn−1, then the lemma is proved.
This is because that the distance between s and t is at most n− 1 if s and t is connected, where n
is the number of vertices in graph G.

We claim that the following three kinds of certificates can be designed.

• A certificate that vertex v is in Ci for all v ∈ Ci

• A certificate that vertex v is not in Ci for all v /∈ Ci, assuming the verifier already knew the
size of set Ci.

• A certificate that |Ci| = c, assuming the verifier already knew the size of set Ci−1.

Since C0 = {s}, then the size of C0 must be 1. We can use the third kind of certificate iteratively
to convince the verifier of the sizes of the sets C1, C2, . . . , Cn−1. Finally, we use the first two kinds
of certificates to convince the verifier that whether t ∈ Cn−1.

Certifying that v ∈ Ci: The certificate is a sequence of vertices v0, v1, . . . , vk such that v0 = v,
vk = s, k ≤ i and {vi, vi−1} ∈ E for all 1 ≤ i < k.

Certifying that v /∈ Ci given |Ci|: Let u1, u2, . . . , uk be all vertices in Ci, where k = |Ci|.
Assume that u1 < u2 < . . . < uk. The certificate is the sorted list of certificates that uj ∈ Ci for
1 ≤ j ≤ k (certificate sequence: u1 ∈ Ci, u2 ∈ C2, . . . , uk ∈ Ci). The verifier checks each certificate
in the list, checks the total number of certificates is indeed |Ci| and checks each vertex u for which
a certificate is given is indeed larger than the previous vertex. If uj ∕= v for all 1 ≤ j ≤ k, then it
must hold that v /∈ Ci. Conversely, if v ∈ Ci, there must exist a uj = v.

Certifying that v /∈ Ci given |Ci−1|: Similarly, let u1, u2, . . . , uk be all vertices in Ci−1, where
k = |Ci−1|. Assume that u1 < u2 < . . . < uk. The certificate is the sorted list of certificates that
uj ∈ Ci for 1 ≤ j ≤ k (certificate sequence: u1 ∈ Ci, u2 ∈ C2, . . . , uk ∈ Ci). The verifier checks
each certificate in the list, checks the total number of certificates is indeed |Ci−1| and checks each
vertex u for which a certificate is given is indeed larger than the previous vertex. If vertex v and
all of v’s neighbors does not in u1, u2, . . . , uk, then it must hold that v /∈ Ci. Conversely, if v ∈ Ci,
then either vertex v or one of v’s neighbors must be in set Ci−1.

Certifying that |Ci| = c given |Ci−1|: The certificate is the list of n certificates for each vertex
1 to n in ascending order (certificate for vertex 1, certificate for vertex 2, . . . , certificate for vertex
n). For each vertex u ∈ V , the certificate either indicates u ∈ Ci or u ∕∈ Ci. The verifier checks
each certificate in the list, checks the total number of certificates is indeed n and checks each vertex
u for which a certificate is given is indeed larger than the previous vertex. If there are exactly c
certificates indicating that a vertex belong to set Ci, then the size of Ci must be c.

4

